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Abstract. We study the electronic structure of three-dimensional quantum dots using the Hartree-Fock
approximation. The confining potential of the electrons in the quantum dot is assumed to be spatially
isotropic and harmonic. For up to 40 interacting electrons the ground-state energies and ground-state
wavefunctions are calculated at various interaction strengths. The quadrupole moments and electron den-
sities in the quantum dot are computed. Hund’s rule is confirmed and a shell structure is identified via the
addition energies and the quadrupole moments. While most of the shell structure can be understood on the
basis of the unperturbed non-interacting problem, the interplay of an avoided crossing and the Coulomb
interaction results in an unexpected closed shell for 19 electrons.

PACS. 73.21.La Quantum dots – 31.15.Ne Self-consistent-field methods

1 Introduction

A quantum dot consists of a number of electrons spatially
confined to some 100 Å such that quantum mechanics
is important for determining its physical properties [1].
The physics of quantum dots is especially interesting due
to the fact that their parameters, such as the strength
and deformation of the confining potential, can be ad-
justed experimentally. This is important since, for instance
as a function of the confining potential strength, quan-
tum dots exhibit three qualitatively distinct dynamical
regimes: (i) the atomic regime, (ii) the chaotic regime
and (iii) the Wigner-crystallization regime. In the atomic
regime the kinetic energy, caused by a strong confining
potential, dominates over the Coulomb energy. Since in
this regime quantum dots show atom-like features such as
a discrete energy spectrum and a shell structure, they can
be regarded as artificial atoms [1,2]. In the chaotic regime
both interactions are comparable, resulting in very inter-
esting physical properties [3]. The electron-electron inter-
action is dominant in the Wigner-crystallization regime
leading to a realization of a crystalline quantum state first
predicted nearly 70 years ago by Wigner [4].

Using a number of approximation schemes all three
regimes can be explored computationally. The chaotic re-
gime is best described by Random Matrix Theory [3,5].
For only a few electrons exact diagonalization is possi-
ble [6,7]. In principle this method is useful for study-
ing all three regimes [8]. In practice, however, due to
the exponential proliferation of quantum configurations,
its applicability is restricted to the few-particle case; a
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major limitation of the direct diagonalization method.
For larger particle numbers mean-field theories such as
Hartree-Fock can be used [9]. This method yields use-
ful approximations for ground-state energies and ground-
state wave functions [10]. For even larger particle numbers
density-functional theory has already been applied [11].
Because of the possibility of experimentally changing the
properties of the confining potential, the three regimes
can also be explored experimentally. Experimental obser-
vations of energy spectra and shells obtained from trans-
port experiments [12] are in good agreement with theoret-
ical predictions. Even the probability density of electrons
in self-assembled quantum dots can be measured using
magnetotunneling spectroscopy [13].

All experiments mentioned above, and hence also
many of the calculations addressing these experiments,
are realized with two-dimensional quantum dots. Two-
dimensional quantum dots result when the confining po-
tential is much stronger in one spatial direction, referred to
as the z-direction, than in the remaining two (x and y). As
a consequence, the motion in the z-direction can be sep-
arated from the x-y motion and due to the large spacing
between the z eigenenergies the lowest z-state is occupied
by all of the electrons in the dot. Thus, in this situation,
the z-direction contributes negligibly to the physics of the
system. In principle, however, it is also possible to realize
a spatially isotropic quantum dot with the same confine-
ment properties in all three directions. In this case the z
direction is as important as the x and y degrees of freedom
and the resulting quantum dot bears a much closer resem-
blance to real 3D atoms. Quantum dots of this nature,
with isotropic harmonic confinement in all three spatial
dimensions, are investigated in this paper.
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It is interesting to note that similar systems in which
interacting electrons are confined by harmonic potentials
have already been studied theoretically almost a hundred
years ago. In 1904, the English physicist J.J. Thomson
proposed a model for the atom in which the positive charge
is uniformly distributed over the whole atom [14]. This
positive background charge creates a three-dimensional
harmonic confining potential in which the electrons move;
very similar to the 3D quantum dots studied in this paper.
Since the same 3D potential model also applies to other
fields of physics, such as clusters [15] or ions in a Paul
trap [8], all these systems can be considered as realiza-
tions of Thomson’s atom [16–20].

In this paper we focus on the investigation of 3D quan-
tum dots in the atomic regime. We use the Hartree-Fock
approximation to calculate the ground-state wave func-
tions and the corresponding eigenenergies for up to 40 in-
teracting electrons. Particular attention is directed toward
the influence of level crossings on the shell structure in the
quantum dot.

2 Model

We consider N electrons in a three-dimensional harmonic
oscillator potential with Coulomb-repulsion between each
other. Then, the Hamiltonian writes

H =
∑
i≤N

p2
i

2m∗ +
1
2
m∗Ω2x2

i +
∑

i<j≤N

e2

4πε
1

|xi − xj | , (1)

whereΩ is the oscillator frequency,m∗ is the effective elec-
tron mass, e is its charge and ε is the dielectric constant.
Writing the Hamiltonian as a sum of the unperturbed and
the interacting part, H = H0 + Hint, the first part can
be transformed into dimensionless coordinates r ≡ x/b,
where b ≡ √

�/m∗Ω is the oscillator length. We obtain
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∑
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Since the Hamiltonian H0, the square of the angular mo-
mentum L2 and its z component Lz commute, the eigen-
states of this Hamiltonian can be chosen to be simultane-
ous eigenfunctions of H0, L2 and Lz according to

ϕnlm(r) = Rnl(r) · Ylm(ϑ, ϕ) , n, l ≥ 0, |m| ≤ l . (3)

Here, Ylm are the spherical harmonics and Rnl are the
radial wave functions of the 3D harmonic oscillator,

Rnl(r) =
[

2n!
Γ (n+l+ 3

2 )

] 1
2

rl L(l+ 1
2 )

n (r2) e−
1
2 r2

, (4)

where L(α)
n (x) are the Laguerre polynomials as defined

in [21]. The eigenenergies

Enl = 2n+ l +
3
2

(5)

are independent of the quantum number m since we as-
sume that no magnetic field is switched on. Finally, the
degeneracy of the energy Enl is

gnl = (2n+ l + 1)(2n+ l + 2) , n, l ≥ 0 , (6)

where the electron spin is taken into account, i.e. each
state can be occupied by a spin up and a spin down. This
degeneracy will later turn out to be important for dis-
cussing the shell structure of 3D quantum dots.

In dimensionless coordinates the interacting part of the
Hamiltonian, Hint, is given by

Hint =
∑

i<j≤N

γ

|ri − rj | · (7)

Thus, the effective interaction strength between the elec-
trons is given by the ratio γ = b/a∗0, with the effective
Bohr radius a∗0 = 4πε�2/m∗e2. For a strong confinement
potential (Ω → ∞), γ goes to zero and the kinetic energy
of the system increases whereas the Coulomb-energy can
be neglected. In that case, the properties of the quantum
dot are given by the noninteracting Hamiltonian H0 and
the interaction acts merely as a small perturbation. In the
opposite limit of a weak confining potential, i.e. Ω → 0,
the interaction γ becomes arbitrarily strong and the sys-
tem will undergo a phase transition to the Wigner crys-
tal [4]. In this paper, we choose the parameters of GaAs,
with the effective Bohr radius a∗0 much larger than the
Bohr radius a0, a∗0 ≈ 180 a0 = 95 Å. Taking the oscillator
length b as 18 nm, the effective interaction strength be-
comes γ = 1.89 which has been used for the calculations
in Section 4. In Section 5, we present results for various
interaction strengths up to γ = 3.0, corresponding to an
oscillator length b of 29 nm. However, our results are not
restricted to quantum dots in GaAs as an interaction γ
in this region can be realized in many other materials by
appropriate choice of the oscillator frequency Ω.

3 Hartree-Fock approximation

The Hartree-Fock approximation is a mean-field theory
that reduces the interacting many-body problem to a
problem of independent particles moving in an effective
self-consistent field. The Hartree-Fock ground state is as-
sumed to be a single Slater determinant

|Ψ0〉 =
∏

1≤p≤N

c+p |0〉 , (8)

and hence is a quantum mechanical many-body state
obeying the fermionic antisymmetry relation. The fermion
operator c+p creates a state |p〉 with wavefunction 〈r|p〉 =
ψp(r), the Hartree-Fock single-particle states, where p de-
notes a complete set of quantum numbers including spin.
These wave functions are chosen in such a way that the
expectation value of the energy of the single Slater deter-
minant |Ψ0〉 becomes minimal. From this requirement the
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Hartree-Fock equations for the wave functions ψp(r) fol-
low. Expanding the Hartree-Fock functions in some known
basis ϕλ,

ψp(r) =
∑

λ

uλp ϕλ(r), (9)

results in the Hartree-Fock equations for the unitary
transformation uλp,∑

µ

〈λ|T |µ〉uµp = εpuλp , (10)

with definitions for the Hartree-Fock potential VHF and
the density matrix ρ,

〈λ|T |µ〉 ≡ 〈λ|H0 |µ〉 + 〈λ|VHF |µ〉 ,
〈λ| VHF |µ〉 ≡

∑
λ′µ′

( 〈λλ′|Hint |µµ′〉

− 〈λλ′|Hint |µ′µ〉 )
ρµ′λ′ ,

ρλµ ≡
∑
i≤N

uλi u
∗
µi . (11)

Equation (10) is formally the diagonalization of a single-
particle operator T with eigenenergies εp and matrix
elements 〈λ|T |µ〉 in the known basis ϕλ(r). However,
the Hartree-Fock potential VHF consisting of direct and
exchange terms enters in this single-particle equation
and depends on its solution, as can be seen from equa-
tions (11). Thus, equations (10, 11) have to be solved self-
consistently. The diagonal matrix element of the Hartree-
Fock potential VHF can be expressed by the Hartree-Fock
functions ψp instead of the basis ϕλ,

〈p|VHF |p〉 =
∑
k≤N

( 〈pk|Hint |pk〉 − 〈pk|Hint |kp〉
)

=
∑
k≤N

(∫
dr

∫
dr′ |ψp(r)|2 γ

|r− r′| |ψk(r′)|2

− δσpσk

∫
dr

∫
dr′ψ∗

p(r)ψk(r)
γ

|r − r′| ψ
∗
k(r

′)ψp(r′)
)
.

(12)

This representation shows that the exchange term van-
ishes for functions ψp and ψk with antiparallel spins. Us-
ing the density matrix ρ, the energy expectation value E0

of the Slater-determinant (8) can be expressed as

E0 =
∑
λµ

(
〈λ|H0 |µ〉 +

1
2
〈λ|VHF |µ〉

)
ρµλ . (13)

Any complete set of functions may be chosen as the
basis {ϕλ} in which the Hartree-Fock functions are ex-
panded. For our problem the most convenient basis is the
set of eigenfunctions ϕnlm (3) of the 3D harmonic oscilla-
tor, supplemented by the spin σ=±1/2. In order to adjust
our basis to the spatial extent of the Hartree-Fock mean
field, we introduce a scale factor β such that r → r/β.
The matrix elements 〈λ|H0 |µ〉 and 〈λλ′|Hint |µµ′〉 with
respect to the basis ϕnlmσ are given in Appendix A.
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Fig. 1. Addition energies Eadd(N) for effective interaction
strength γ = 1.89. The inset shows a log-log plot of the to-
tal ground-state energy E0 vs. electron number. The energies
are displayed in units of �Ω, where Ω is the frequency of the
harmonic confining potential.

We use a restricted Hartree-Fock method to preserve
certain symmetries of the Hamiltonian. Expanding each
Hartree-Fock function ψp only in basis functions with the
same eigenvalue to some operator guarantees that the
Slater determinant |Ψ0〉 is an eigenfunction of this opera-
tor. This way, the Hartree-Fock ground state is chosen as
an eigenfunction of the z-component of the angular mo-
mentum Lz, the parity and the spin. The eigenvalues of
the basis functions ϕnlmσ with respect to these operators
are m, (−1)l and σ, respectively. It is possible to break
these symmetries in an unrestricted Hartree-Fock method
in order to further minimize the ground-state energy E0.
In this case, without sacrificing the lower energy, the sym-
metries may be restored in an additional step using pro-
jection methods [22].

4 Results

We solved the Hartree-Fock equation (10) numerically for
up to 40 electrons and effective interaction strength up to
γ=3.0. In this section, we present ground-state energies,
the quadrupole moments and particle densities for a fixed
interaction strength of γ=1.89. Up to 30 basis functions
were used to construct each Hartree-Fock single-particle
state ψp. Furthermore, the scale factor β was optimized
for each particle number in order to minimize the ground-
state energy. For values of β between about 1.1 and 1.8
the Hartree-Fock ground-state energy E0 was found to be
independent of β. This proves that our basis set is large
enough to exhibit the “plateau property” [22], a necessary
condition for converged calculations with respect to the
number of basis states.

As a function of the electron number N the ground-
state energiesE0(N) of the quantum dot behave in leading
order like N5/3. This is illustrated in the inset of Figure 1.
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This behavior is consistent with the classical ground-state
energy of an ensemble of N charged particles in a 3D har-
monic potential [23]. Further information on the structure
of an N -particle quantum dot in a 3D confining potential
can be derived from the addition energy as a function of
the particle number N . Based on the ground-state ener-
gies E0(N) the addition energy as a function of particle
number N is given by

Eadd(N) = E0(N+1)− 2E0(N) + E0(N−1), (14)

as shown in Figure 1. The addition energy Eadd(N) is
the discrete second derivative of the ground-state energy
with respect to the particle number and gives the energy
required to add the (N+1)-th electron to the system com-
pared with adding theN -th electron. Peaks of the addition
energy indicating closed shells can clearly be identified for
the magic numbers 2, 5, 8, 13 etc. Like in atomic physics,
these shells are explained on the basis of the eigenener-
gies Enl = 2n+ l + 3

2 of the non-interacting problem and
their degeneracies gnl (6). This zero-order picture, how-
ever, can only be a guide since switching on the interac-
tion partly lifts the degeneracy, especially for states with
different angular momentum l. As long as electrons are
added to former degenerate states, i.e. states of one shell,
the addition energy is small. Only if an electron is added
to a state of higher energy of a new shell, the addition
energy becomes large. Furthermore, we find Hund’s rule
confirmed for these systems. This means that degenerate
states, for the interacting case states with the same quan-
tum numbers n and l, are occupied such that the total
spin becomes maximal. This leads to half-filled shells if
the highest degenerate states are occupied by one elec-
tron each, with parallel spins, as is the case for particle
numbers 5, 13, 27 and 37. In a filled shell, each degener-
ate state is occupied by a spin up and a spin down, here
for 2, 8, 20, 34 and 40 electrons. A peculiarity appears for
19 electrons, where the peak in Figure 1 indicates an unex-
pected closed shell. The reason for this phenomenon is the
combination of a level crossing of single-particle states and
the Coulomb interaction of electrons in the same orbital.
This mechanism is discussed in more detail in Section 5.

The Hartree-Fock theory gives an approximation for
the ground-state wavefunction |Ψ0〉 from which all ground-
state properties can be derived. We calculated the quadru-
pole moment ql=2,m=0 for the 3D quantum dots. The di-
pole moment and all other quadrupole moments vanish
in the restricted Hartree-Fock method because of the par-
ity and the azimuthal symmetry of the wavefunction. Ex-
pressed via the density matrix (11), the quadrupole mo-
ment is

q20 =
e

2

√
5
4π

∑
λµ

{
3 〈λ| z2 |µ〉 − 〈λ| r2 |µ〉} ρµλ . (15)

The results are shown in Figure 2. Again, closed shells
can be identified for the same magic numbers as given by
the addition energy. The quadrupole moment q20 vanishes
for closed shells as the corresponding wavefunctions have
rotational symmetry.
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Fig. 2. Quadrupole moments q20 of the quantum dots as a
function of the electron number.
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We also calculated the electron densities of the ground-
state wavefunctions. Only for closed shells are they ro-
tationally invariant and a radial density can be plotted.
Figure 3 shows the radial electron densities for 3D quan-
tum dots with 8, 20 and 40 electrons, respectively. These
densities exhibit spatial shells. One shell for 8 electrons
whereas for 20 electrons the highest density is in the cen-
ter, surrounded by a shell with a larger radius. There are
two shells for 40 electrons of which the inner shell has the
same radius as the single shell for 8 electrons. Figure 4
shows the electron density for the non-rotationally invari-
ant case of 22 electrons in the x, z plane. Of all quantum
dots considered, this is the one with the largest deforma-
tion, i.e. the largest quadrupole moment (Fig. 2). Because
of the azimuthal symmetry, the 3D density follows from
this plot by rotation about the z-axis. We obtain a central
maximum surrounded by three rings around the z-axis.
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Fig. 4. Grey-scale plot of the electron density in the x, z plane
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5 Evolution of the new shell

While the previous section was devoted to the investiga-
tion of the properties of the quantum dots at a constant
interaction, we consider the addition energies for various
values of the effective electron-electron interaction γ in
this section. The addition energies are of particular inter-
est as they give information on the electron shell structure
in the quantum dots. Figure 5 shows the addition energies
of 3D quantum dots with up to 23 electrons for interac-
tions up to γ=3.0. The clear peak structure as exhibited
by the addition energies at small interactions, γ = 1.0, is
modified with additional peaks when γ is increased. This
shows the growing influence of the Coulomb interaction on
the electronic structure in the quantum dot. For instance,
a peak in the addition energies arises for N = 16 for in-
teractions larger than roughly γ = 2. This is caused by
the lifting of the degeneracy of the states with quantum
numbers n= 0 and l= 2, due to the interaction between
the electrons. However, we will concentrate in the follow-
ing on the evolution of the peak at N=19 which emerges
for increasing interaction from the peaks at N = 18 and
N = 20 indicating a closed shell for 19 electrons in the
quantum dot. Unlike the other closed and half-filled shells
at N=2, 5, 8, 13, 18, and 20 this shell is not expected on
the basis of the non-interacting single-particle states in a
3D harmonic oscillator.

The closed shell at N =19 can be understood by tak-
ing into account the influence of the Coulomb interaction
on the 1s and 0d levels. The label 1s refers to the states
with radial quantum number n= 1 and angular momen-
tum l= 0 and correspondingly 0d to n= 0 and l= 2. For
a finite interaction, n and l are no longer good quantum
numbers. However, we can still use the terms 1s and 0d
to describe the Hartree-Fock states which evolve from the
non-interacting 1s and 0d levels. In the non-interacting
case, γ = 0, the two 1s states with different spin are de-
generate with the ten 0d states, as can be seen from equa-
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Fig. 5. Addition energies for four different interactions. From
bottom to top: γ = 1.0, γ = 1.89, γ = γ0 ≈ 2.34, γ = 3.0. For
better presentation an offset was added to the different plots:
+0.2�Ω (γ =1.89), +0.4�Ω (γ =γ0), and +0.6�Ω (γ =3.0).
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Fig. 6. Hartree-Fock single-particle energy of the 1s state rel-
ative to the 0d states for 18, 19, and 20 particles and various
effective interaction strengths γ.

tion (5). Accordingly, 20 electrons are necessary in total to
occupy all 1s and 0d states as the lower-lying shells con-
tain 8 electrons, namely two 0s states and six 0p states.
With all degenerate states occupied, a closed shell appears
in this case of 20 electrons. Adding the next electron re-
quires a higher energy than the previous ones resulting in
a peak in the addition energy at N=20.

In the interacting case, the single-particle energies be-
come dependent on the number of electrons in the quan-
tum dot. In particular, the degeneracy of the 1s and 0d
levels is lifted. Figure 6 shows the Hartree-Fock single-
particle energies ε, as defined in equation (10), of the 1s
state and the 0d states for N = 18, 19, and 20 electrons.
For a weak interaction, γ=1.0, the single-particle energy
of the 0d levels is smaller than the energy of the 1s states.
Therefore the 0d states are occupied first by the electrons
resulting in a closed shell for 18 electrons. The following
two electrons occupy the 1s orbitals leading to a closed
shell for 20 electrons. Both shells can be clearly identified
from the Hartree-Fock addition energies, Figure 5.
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If the effective interaction γ is increased, the energy
of the single occupied 1s state relative to the 0d states
at N=19 does not increase further but instead decreases
and becomes degenerate again with the fully occupied 0d
states at a value γ0≈2.34. The energy difference between
these states is plotted in Figure 7 as a function of the ef-
fective interaction for 19 electrons. The behavior of the
two states at the point of degeneracy is studied in more
detail in Section 7. Thus, for 19 electrons and γ= γ0 the
single-particle energies resemble the noninteracting case,
as depicted in Figure 6. Adding the next electron, how-
ever, removes this near-degeneracy, since the 1s orbital
is filled with two electrons leading to a large Coulomb
interaction energy. Correspondingly, the doubly occupied
1s state lies energetically above the 0d levels as shown in
Figure 6, in contrast to the non-interacting case where the
levels stay degenerate also for N=20. With all degenerate
states occupied, a closed shell occurs for 19 electrons. This
picture is confirmed by the addition energies, as shown in
Figure 5. For γ = γ0 the former distinct peaks at N = 18
and N = 20 merge into one peak at N = 19. As shown in
Figures 1 and 5, this process already sets in at γ≈1.89.

Increasing the interaction further, γ>γ0, lifts the de-
generacy of the 1s and the 0d states at N=19, as shown
in Figure 7. From the arguments given above, one should
expect that the closed shell for 19 electrons disappears
again. This is, however, not the case as the interaction
energy between the two electrons in the 1s state grows
stronger than the energy difference between the 1s and 0d
states. For an effective interaction of γ = 3.0, the single
occupied 1s states lies energetically even below a single
occupied 0d state. This results in a different ground-state
configuration for N=18 as can be seen from Figure 6. One
of the consequences is that the total spin of the 18-electron
quantum dot changes from Sz = 0 for small interactions
to Sz = 1 for γ >∼ γ0. For N = 19, the single-particle en-
ergy of the 1s electron is still smaller than the 0d states
such that the 1s electron appears as an inner electron for
the 18- and 19-electron configurations. Due to the large
interaction energy, the energy of the 1s state rises rela-
tive to the 0d states if the 1s orbital is occupied by both
a spin up and a spin down electron (compare Fig. 6 for
20 electrons). Thus, again, we encounter a closed shell for
19 electrons, consistent with the peak at N = 19 in the
addition energies for γ=3.0 (see Fig. 5).

As a result of this section we find that the unexpected
closed shell for 19 electrons in the 3D quantum dot is ex-
plained as an interplay of a level crossing of single-particle
states and the Coulomb interaction of two electrons in the
same orbital. We will show in Section 7 that the level cross-
ing is actually an avoided crossing. In fact, the mechanism
described above does not require truly degenerate levels
but levels whose energy difference is much smaller than
the Coulomb energy and the typical level spacing �Ω. It
should be noted that the new shell cannot be explained
by the large Coulomb interaction alone. If the energy dif-
ference were of the same order as the Coulomb energy, the
new shell would not have occurred. Due to the change in
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Fig. 7. Energy difference between the 1s and the 0d orbitals for
19 electrons as a function of the interaction strength γ. The
inset schematically shows the avoided crossing of the energy
levels around γ0 =2.341539.

the ground-state configuration for N=18, the new shell at
N=19 even persists beyond the crossing point, i.e. γ>γ0.

6 Level crossing shells

We demonstrated in the previous section how the combi-
nation of a level crossing with the Coulomb interaction
energy can lead to a peak in the addition energies at
an unexpected electron number. Thus the question arises
whether this mechanism applies only to the case of a per-
fect 3D harmonic oscillator confinement with 19 electrons,
or whether similar effects occur in quantum dots of differ-
ent shape or electron number. The Coulomb interaction
is always present in any realistic quantum dot. Moreover,
level crossings appear in quantum dots as a function of
various additional parameters, such as externally applied
magnetic or electric fields, or the deformation of the con-
fining potential.

In fact, the magnetic field was used in a recent exper-
iment to enforce level degeneracy in order to study the
direct and exchange Coulomb interaction in a 2D quan-
tum dot [24]. In a small region around the crossing point,
the ground-state configuration is found to exhibit a dif-
ferent spin, S = 1, as compared to S = 0 away from the
crossing. This is similar to the transition of the ground
state for 18 electrons as presented in the previous section
that changes the spin from Sz = 0 to Sz = 1 beyond the
level crossing. The influence of the anharmonicity in 2D
quantum dots on the addition energies was investigated
experimentally and theoretically in reference [25]. Devia-
tions from a perfect 2D harmonic oscillator potential were
taken into account theoretically by a small additional non-
parabolicity in the confining potential. The effect of which
is to lift some degeneracies caused by the symmetry of the
potential. The position of one peak in the addition ener-
gies is predicted to depend on the ratio of the Coulomb ex-
change energy to the energy difference between the former
degenerate states. This is confirmed in the experiments on
several vertical quantum dots in the same work.
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Hence, we conclude that the interplay of level cross-
ings with the Coulomb energy offer a variety of effects
which become visible for instance in the addition energies
or in the spin of the ground state. The concrete behav-
ior at and around the level crossing depends on the ra-
tio of the involved energies such as the level spacing of
the noninteracting quantum dot, the energy difference be-
tween almost-degenerate states, the direct and exchange
Coulomb interaction or the Zeeman energy. The closed
shell for 19 electrons, as predicted in the previous section,
is but one example of these effects. We expect that the
mechanism described above also occurs in quantum dots
of different shape, particle numbers and additional exter-
nal fields.

7 Avoided crossing

We will return once again to the level crossing of the 1s
and the 0d states as discussed in Section 5. Figure 7 shows
the energy difference between the single occupied 1s level
and the 0d orbitals for 19 particles as a function of the
interaction strength γ. Starting from the degenerate sit-
uation at γ = 0, the single-particle energies first diverge,
but then start to converge again and seemingly cross at
γ=γ0≈2.341539. This means that for small γ the Hartree-
Fock level with 1s character lies above the level with 0d
character, while for γ > γ0 the 1s level lies below the 0d
level. A closer look at the 1s and 0d levels themselves
in the region around γ0 reveals that the levels are not
actually crossing. This is illustrated in the inset of Fig-
ure 7. The closest distance is about 6×10−6

�Ω. However,
they do exchange their character such that the energeti-
cally higher level has s character for small γ, and has d
character for large γ. This behavior, known as an avoided
crossing, occurs in many fields of physics [26–28], notably
in the quantum chaos context [3].

What happens at the crossing at γ0? In order to answer
this question we label the upper level by |x>〉 and the
lower level with |x<〉. Table 1 lists the most important
transformation amplitudes of these orbitals and compares
them with the amplitudes of the states |s〉 (emerging from
the 1s orbital) and |d〉 (emerging from the 0d orbital with
m = 0) computed at γ = 2.34, which differs from γ0 by
only about 0.06%. The transformation amplitudes refer
to our 3D harmonic oscillator basis (3). On the basis of
these coefficients we find for the states |x>〉 and |x<〉:

|x>〉 ≈ 1√
2

(|s〉 + |d〉), |x<〉 ≈ 1√
2

(|s〉 − |d〉). (16)

Thus, at γ = γ0 the states |x>〉 and |x<〉 are even and odd
linear combinations of the states |s〉 and |d〉, respectively.
In the restricted Hartree-Fock scheme, this linear combi-
nation is only possible since both states have the same
magnetic quantum number m=0. Furthermore, the van-
ishing energy difference at γ0, suggested by Figure 7, is an
illusion. In fact, Figure 7 is not defined in a narrow region
around γ0 since, according to (16), “s” and “d” orbitals
are not defined at γ0. This includes a small “forbidden

Table 1. Expansion coefficients for the |s〉 and |d〉 orbitals at
γ = 2.34 and for the |x>〉 and |x<〉 orbitals at γ = γ0 in the
basis ϕnlm (3) with m = 0.

γ = 2.340000 γ = 2.341539

n l |s〉 |d〉 |x>〉 |x<〉
0 0 −0.635 0.709 × 10−2 −0.449 −0.449

1 0 −0.417 0.464 × 10−2 −0.295 −0.295

2 0 0.511 −0.570 × 10−2 0.361 0.362

3 0 −0.362 0.404 × 10−2 −0.256 −0.256

4 0 0.168 −0.188 × 10−2 0.119 0.119

0 2 −0.741 × 10−2 −0.662 −0.468 0.468

1 2 0.686 × 10−2 0.615 0.435 −0.435

2 2 −0.433 × 10−2 −0.389 −0.275 0.275

3 2 0.189 × 10−2 0.171 0.121 −0.121

region” in γ of size at least ∆γ ≈ 10−3 (see Tab. 1). Ac-
cording to the “no-crossing-rule” [3] single-particle states
of the same symmetry avoid each other with probability
one. Adding another parameter to our problem, an exam-
ple would be the deformation of the confining potential,
we would be able to use this extra freedom to enforce an
exact crossing resulting in a diabolical point [26].

However, for the mechanism described in Section 5
that is responsible for the closed shell at N=19 it is of no
importance whether the crossing is avoided or not, since
the energy difference at the crossing point, 6×10−6

�Ω, is
by far smaller than all other energies involved.

8 Conclusion

In this paper we used the Hartree-Fock approximation to
investigate the electronic structure of 3D quantum dots in
the atomic regime with spatially isotropic harmonic con-
finement. For effective interactions up to γ=3.0, we find
a shell structure that manifests itself in the ground-state
energies as well as in the spatial distributions of the wave
functions. Hence, the 3D quantum dots exhibit atom-like
properties at this interaction strength. This is due to the
fact that the Coulomb interaction is not strong enough to
organize the electrons into a Wigner crystal. In most cases
the magic numbers indicating closed shells are determined
by the degeneracies of the unperturbed 3D harmonic os-
cillator confining potential. Shells and magic numbers are
well known from conventional atomic physics where the
periodic table of the elements is just one consequence of
these features. Naturally, the magic numbers of atoms dif-
fer from the ones found here due to the different confining
potential. A shell structure was also found in experiments
on 2D quantum dots: reference [12] shows the addition en-
ergies for 2D quantum dots similar to Figure 1, only with
different magic numbers because of the reduced dimen-
sion. Thus, we expect that a measurement of the addition
energies on 3D quantum dots will confirm the magic num-
bers predicted in this work. The electron densities could
be made visible using magnetotunneling.
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Addition energies have been calculated for various in-
teraction strengths up to γ=3.0. They show the evolution
of new peaks for increasing interaction strengths indicat-
ing closed shells at unexpected numbers of electrons. Due
to a combination of an avoided crossing of single-particle
states and the Coulomb interaction, a new shell emerges
for 19 electrons in the quantum dot if the interaction ap-
proaches the crossing point γ0, and continues to exist for
larger interactions γ > γ0. At the same time, the spin of
the ground state of the 18-electron quantum dot changes
from Sz = 0 to Sz = 1. As level crossings can be realized
by external magnetic or electric fields or the deformation
of the confining potential, we expect that these effects are
not restricted to 3D quantum dots with 18 and 19 elec-
trons but to appear also in 2D quantum dots with differ-
ent interaction strengths and different electron numbers.
In fact, similar results have already been observed exper-
imentally [24,25].

While this paper concentrated on 3D quantum dots
with a spatially isotropic potential, it is also interesting
to study deformed 3D quantum dots. The deformation
can be realized by a different oscillator strength in one
direction which allows to study the transition from a 2D
to a 3D quantum dot. In Appendix A we give the matrix
elements including a possible deformation in the confining
potential.

We believe that the central results of this paper ap-
ply to a whole range of systems, including quantum dots,
traps, and clusters. While the basic physics of these sys-
tems is very similar, to the point where one may consider
them as various possible implementations of Thomson’s
atom, the main difference between these systems is the
effective interaction strength. With γ≈2.8 the typical in-
teraction strength for clusters lies within the range of our
calculations, and experiments confirm the shell structure
in clusters [29]. For ions in a Paul trap the interaction is
several orders of magnitude larger (γ ≈ 107) and hence,
depending on the details of trap parameters and particle
numbers, 2D and 3D Wigner crystallization is found in
experiments [30–32].

We thank B. Reusch and B. Kramer for stimulating and pro-
ductive discussions and B. Reusch for help with the compu-
tation of the Coulomb matrix elements. This work was sup-
ported by the National Science Foundation under Grant No.
PHY-9984075.

Appendix A: Matrix elements

In this appendix we present the matrix elements used in
our Hartree-Fock calculations. The solutions of the 3D
harmonic oscillator, ϕnlmσ (3), are used as basis functions
modified by a scale factor ϕ(r) → ϕ(r/β). First we cal-
culate the matrix element of the noninteracting Hamil-
tonian H0

def , allowing for a possible deformation of the
oscillator potential in z-direction,

H0
def = −1

2
∆+

1
2
(x2 + y2 + α2z2). (17)

Even for the isotropic case α=1 this is not diagonal any-
more, because of the scale factor β. Using the orthogo-
nality of the Laguerre polynomials and the spherical har-
monics yields

〈nlmσ|H0
def |n′l′m′σ′〉 = δnn′ δll′ δmm′ δσσ′

1
β2

(2n+l+
3
2
)

+
1
2

(
1 − 1

β4

)
δll′ δmm′ δσσ′

〈
nl

∥∥r2∥∥n′l
〉

+
1
2

(α2 − 1) 〈nlmσ| z2 |n′l′m′σ′〉 , (18)

with the reduced matrix element

〈
nl

∥∥r2∥∥n′l
〉

= β2

{
δnn′

(
2n+ l +

3
2

)

− δn n′−1

√
(n+1)

(
n+l+

3
2

)
− δn n′+1

√
n
(
n+l+

1
2

) }
·

(19)

The matrix element of z2 in equation (18) is also needed
for the quadrupole moment (15). With z2 = r2 cos2(θ)
and expressing combinations of spherical harmonics by
Clebsch-Gordon coefficients 〈lm l′m′|LM〉, it results in

〈nlmσ| z2 |n′l′m′σ′〉 =

δmm′ δσσ′
1
3

{
δll′

(
1 + 2〈lm 20|lm〉〈l0 20|l0〉

)〈
nl

∥∥r2∥∥n′l
〉

+ δl′ l+2 2

√
2l+ 5
2l+ 1

〈(l+2)m 20|lm〉〈(l+2)0 20|l0〉 〈
nl

∥∥r2∥∥n′l+2
〉

+ δl′ l−2 2

√
2l− 3
2l+ 1

〈(l−2)m 20|lm〉〈(l−2)0 20|l0〉 〈
nl

∥∥r2∥∥n′l−2
〉}

, (20)

with the reduced matrix elements

〈
nl

∥∥r2∥∥n′l+2
〉

= β2

{
δnn′

√(
n+l+

5
2

)(
n+l+

3
2

)

− δn n′+1 2

√
n
(
n+l+

3
2

)
− δn n′+2

√
n(n− 1)

}
, (21)

and
〈
nl

∥∥r2∥∥n′l−2
〉

obtained by exchange of n, l and n′, l′.
The calculation of the Coulomb matrix element is

lengthy but straightforward. The set of quantum numbers
nlmσ is abbreviated by integers i. The operator 1/|r− r′|
is expanded in spherical harmonics. Then, the integrals
over θ and ϕ result in Clebsch-Gordon coefficients. For
the radial part, the Laguerre polynomial is expanded and
with the hypergeometric function 2F1 the Coulomb matrix
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element is given by

〈1 2| 1
|r − r′| |3 4〉 =

δσ1σ3 δσ2σ4

1
4β

∞∑
l=0

l∑
m=−l

{ ∑
k1k2k3k4

a1 a2 a3 a4

×
[
Γ (K+L/2+5/2)

(p+ 1) 2K+L/2+5/2 2F1

(
1,K+L/2+5/2; p+2;

1
2

)

+
Γ (K+L/2+5/2)
(q+1) 2K+L/2+5/2 2F1

(
1,K+L/2+5/2; q+2;

1
2

) ]

×
√

(2l2 + 1)(2l3 + 1)
(2l1 + 1)(2l4 + 1)

〈l3m3 lm|l1m1〉〈l30 l0|l10〉

〈l2m2 lm|l4m4〉〈l20 l0|l40〉
}

· (22)

Here, the sum over l is not infinite since the Clebsch-
Gordon coefficients are only nonzero for certain combina-
tions of l and the li. The sum over ki ranges from 0 to ni

and we defined L = l1 + l2 + l3 + l4, K = k1 +k2 +k3 +k4,
p = k2+k4+ 1

2 (l2+l4+l+1), q = k1+k3+ 1
2 (l1+l3+l+1)

and the coefficients ai = a(ni, li, ki),

ai =
(−1)ki

ki!

[
2ni!

Γ (ni + li + 3
2 )

] 1
2 Γ (ni + li + 3

2 )
(ni − ki)!Γ (li + ki + 3

2 )
·

(23)

References

1. M.A. Kastner, Physics Today 46(1), 24 (1993)
2. R. Ashoori, Nature 379, 413 (1996)
3. F. Haake, Quantum Signatures of Chaos (Springer, Berlin,

1991)
4. E.P. Wigner, Trans. Faraday Soc. 34, 678 (1938)
5. M.L. Mehta, Random Matrices (Academic, Boston, 1991)
6. D. Pfannkuche, V. Gudmundsson, P. Maksym, Phys. Rev.

B 47, 2244 (1993)
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